Math 210- Exam 1

Fall 2009

1. If $S \subset \mathbb{R}$ is a nonempty bounded set, and $I_{S}=[\inf S, \sup S]$; show that $S \subset I_{S}$: Moreover, if J is any closed bounded interval containing S ; show that $I_{S} \subset J$.
2. Let $S \subset \mathbb{R}$. show that if $u=\sup S$ then for every integer n, the number $u-\frac{1}{n}$ is not an upper bound of S, but the number $u+\frac{1}{n}$ is an upper bound of S.
3. Let $X=\left(x_{n}\right)$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty}\left(x_{n+1} / x_{n}\right)=L>1$. Show that X is not bounded and hence X is not convergent.
4. Let $X=\left(x_{n}\right)$ be a sequence of real numbers such that X does not converge to $x \in \mathbb{R}$. Show that for some ϵ_{0} there exist a subsequence $\left(x_{n_{k}}\right)$ such that $\left|x_{n_{k}}-x\right| \geq \epsilon_{0}$ for all $k \in \mathbb{N}$.
5. If $\sum a_{n}$ with $a_{n}>0$ is convergent, and if $b_{n}=\left(a_{1}+a_{2}+\ldots+a_{n}\right) / n$ for $n \in \mathbb{N}$, then show that $\sum b_{n}$ is always divergent.
Hint: Show that $b_{k} \geq a_{1} / k$ and then look at the partial sums of $\sum b_{k}$.
6. Let g be a rational function (ratio of two polynomials). Show that $\sum g(n) r^{n}$ converges absolutely for $|r|<1$ or diverges if $|r|>1$. Discuss the possibilities if $|r|=1$.
