Math 210- Exam 1

Fall 2009

- 1. If $S \subset \mathbb{R}$ is a nonempty bounded set, and $I_S = [infS, supS]$; show that $S \subset I_S$: Moreover, if J is any closed bounded interval containing S; show that $I_S \subset J$.
- Let S ⊂ R. show that if u = supS then for every integer n, the number u ¹/_n is not an upper bound of S, but the number u + ¹/_n is an upper bound of S.
- 3. Let $X = (x_n)$ be a sequence of positive real numbers such that $\lim_{n\to\infty} (x_{n+1}/x_n) = L > 1$. Show that X is not bounded and hence X is not convergent.
- 4. Let $X = (x_n)$ be a sequence of real numbers such that X does not converge to $x \in \mathbb{R}$. Show that for some ϵ_0 there exist a subsequence (x_{n_k}) such that $|x_{n_k} x| \ge \epsilon_0$ for all $k \in \mathbb{N}$.
- 5. If ∑ a_n with a_n > 0 is convergent, and if b_n = (a₁ + a₂ + ... + a_n)/n for n ∈ N, then show that ∑ b_n is always divergent.
 Hint: Show that b_k ≥ a₁/k and then look at the partial sums of ∑ b_k.
- 6. Let g be a rational function (ratio of two polynomials). Show that $\sum g(n)r^n$ converges absolutely for |r| < 1 or diverges if |r| > 1. Discuss the possibilities if |r| = 1.